On the complexity of higher order abstract Voronoi diagrams

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Randomized Algorithm for Higher-Order Abstract Voronoi Diagrams

Given a set of n sites in the plane, the order-k Voronoi diagram is a planar subdivision such that all points in a region share the same k nearest sites. The order-k Voronoi diagram arises for the k-nearest-neighbor problem, and there has been a lot of work for point sites in the Euclidean metric. In this paper, we study order-k Voronoi diagrams defined by an abstract bisecting curve system tha...

متن کامل

Higher Order City Voronoi Diagrams

We investigate higher-order Voronoi diagrams in the city metric. This metric is induced by quickest paths in the L1 metric in the presence of an accelerating transportation network of axis-parallel line segments. For the structural complexity of k-order city Voronoi diagrams of n point sites, we show an upper bound of O(k(n − k) + kc) and a lower bound of Ω(n+ kc), where c is the complexity of ...

متن کامل

A Note on Higher Order Voronoi Diagrams

In this note we prove some facts about the number of segments of a bisector of two sites that are used in a higher order Voronoi diagram. CR Classification: F.2.1

متن کامل

Higher-order Voronoi diagrams on triangulated surfaces

We study the complexity of higher-order Voronoi diagrams on triangulated surfaces under the geodesic distance, when the sites may be polygonal domains of constant complexity. More precisely, we show that on a surface defined by n triangles the sum of the combinatorial complexities of the order-j Voronoi diagrams of m sites, for j = 1, . . . , k, is O(kn + km+ knm), which is asymptotically tight...

متن کامل

Constructing higher-order Voronoi diagrams in parallel

We use Lee’s sequential algorithm [17] to create the first parallel algorithm which constructs the order-k Voronoi diagram of a planar point set. The algorithm is developed and analyzed within two parallel models, the fine-grained PRAM and the coarse-grained CGM. Its applications include k-nearest neighbor searches in a parallel context, which are important for many applications in computationa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Geometry

سال: 2015

ISSN: 0925-7721

DOI: 10.1016/j.comgeo.2015.04.008